Total asymmetric synthesis of 6-deoxy-5-C-methyl-D-ribohexose: structure in aqueous solution*

Jürgen Wagner and Pierre Vogel[†]

Section de Chimie de l'Université, 2 Rue de la Barre, CH-1005 Lausanne (Switzerland) (Received February 2nd, 1991; accepted for publication May 4th, 1991)

ABSTRACT

(1R,2R,4R)-2-exo-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl (1S)-camphanate [1, Diels-Alder adduct of furan to 1-cyanovinyl (1S)-camphanate, a "naked sugar"] was transformed with high stereoselectivity into (1S,4S,5R,6R,7R)-6-exo,7-exo-(isopropylidenedioxy)-4-exo-methyl-2,8-dioxabicyclo[3.2.1]octan-3-one [(-)-4] and (1S,5R,6R,7R)-6-exo,7-exo-(isopropylidenedioxy)-4,4-dimethyl-2,8-dioxabicyclo[3.2.1] octan-3-one [(-)-5]. Reaction of (-)-5 with Me₃SiCH₂Li gave 5,7-dideoxy-5,5-dimethyl-2,3-O-isopropylidene-D-ribo-heptofuranos-6-ulose [(+)-8, which was then converted into 6-deoxy-5-C-methyl-D-ribo-hexose (10 steps from furan, 59% overall yield) and derivatives. N.m.r. studies established that branching of 6-deoxy-D-allose by a methyl group at C-5 favours the furanose versus the pyranose form of the carbo-hydrate in aqueous solution.

INTRODUCTION

Except for noviose² (6-deoxy-5-C-methyl-4-O-methyl-L-lyxo-hexose), the aldose moiety of noviosylcoumarin antibiotics, branched-chain carbohydrates with the tertiary carbon atom at position 5 are rare natural compounds. Walton et al.³ reported the conversion of D-ribose into methyl 6-deoxy-2,3-O-isopropylidene-5-C-methyl-D-ribo-hexofuranoside (5 steps, 12% overall yield), and Nutt and Walton⁴ prepared 5',5'-di-C-methyladenosine via methyl 2,3,5-tri-O-benzoyl-6-deoxy-5-C-methyl- β -D-ribo-hexofuranoside. To our knowledge, the unprotected branched sugar has not been described. We now report a total synthesis of 6-deoxy-5-C-methyl-D-ribo-hexose and show that, in aqueous solution, the furanose form is preferred.

RESULTS AND DISCUSSION

Double hydroxylation of the optically pure Diels-Alder adduct 1 of furan and 1-cyanovinyl (1S)-camphanate (a "naked sugar"⁵), followed by diol protection as the isopropylidene derivative and saponification of the camphanate, was reported⁶ to yield the ketone (+)-2 and (1S)-camphanic acid (recovery of the chiral auxiliary). Baeyer-Villiger oxidation of (+)-2 with 3-chloroperoxybenzoic acid (NaHCO₃, CH₂Cl₂, 20°)

^{*} Enantiomerically pure 7-oxabicyclo[2.2.1]hept-5-en-2-yl derivatives as synthetic intermediates, Part XVI. For Part XV, see ref. 1.

[†] To whom correspondence should be addressed.

afforded 98% of the corresponding lactone (-)-3. Deprotonation of (-)-3 with $(Me_3Si)_2NLi$ in tetrahydrofuran followed by quenching with methyl iodide gave the exo-monomethylated derivative (-)-4 (98%) with high stereoselectivity. The exo configuration of the methyl group was indicated^{7,8} by the absence of coupling between H-4 and H-5.

Deprotonation of (-)-4 with $(Me_3Si)_2NLi$ in tetrahydrofuran at -65° followed by quenching with methyl iodide gave 96% of the dimethylated lactone (-)-5. Direct double α -methylation of the ketone (+)-2 with potassium hydride and methyl iodide afforded 74% of 6, whereas oxidation with 3-chloroperoxybenzoic acid afforded 74% of (-)-5. Only traces of the regioisomeric lactone 7 were formed under these conditions. The high regioselectivity of the Baeyer-Villiger oxidation $6 \rightarrow 5$ can be attributed to the enhanced migratory aptitude of the C-1-C-2 bond due to the interaction with the electron pair on O-7. Although shorter than the method that involves isolation of (-)-4, the route $2 \rightarrow 6 \rightarrow 5$ gave a lower overall yield (55%) than the route $2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ (92%).

Attempts to generate the methylketone (+)-8 addition of methyl lithium to the lactone (-)-5 all failed. However, treatment of (-)-5 with 2.5 equiv. of Me_3SiCH_2Li in pentane or tetrahydrofuran of followed by aqueous NH_4Cl work-up afforded 98% of the α,β -D-ribo-heptofuranos-6-ulose derivative (+)-8, which was transformed into the corresponding β -furanosyl acetate (-)-9 (97%) by treatment with acetic anhydride-pyridine. Compound (-)-9 could be obtained (87%) from (-)-5 by a "one-pot" procedure (cf. 95% for the two-step procedure). Baeyer-Villiger oxidation of (-)-9

with peroxytrifluoroacetic acid afforded 95% of the 6-deoxy-5-C-methyl-β-D-ribohexofuranose derivative (-)-10. Methanolysis of (-)-10 gave (-)-11 (98%), treatment of which with methanol, 2,2-dimethoxypropane, and p-toluenesulfonic acid gave the known³ derivative (-)-12. Hydrolysis (M H₂SO₄, 80°, 2.5 h) of (-)-12 gave the unprotected sugar as an 89:11 mixture (94%) of the furanose and pyranose forms 13a, β and 14α,β, respectively. The ¹H- (Table I) and ¹³C-n.m.r. (Table II) signals of 13α, 13β, 14 α , and 14 β were assigned with the help of double-irradiation experiments and the 13 C/ 1 H-correlated 2D spectrum (Fig. 1). The signal for H-1 at 4.75 p.p.m. (J_{12} 7.8 Hz) is typical of β -D-allopyranose and its derivatives¹¹ with the 4C_1 conformation¹⁵ (transdiaxial protons), and that at 4.72 p.p.m. ($J_{1,2}$ 1.0 Hz) was attributed to the α -pyranose form 14 α for which a W-type coupling (J_{24} 1.0 Hz) is possible only in the ${}^{1}C_{4}$ conformation, as for D-allose and 6-deoxy-4-O-methyl-D-allose¹¹. As expected, the chemical shifts for the H-1 resonances are slightly larger for the furanoses 13α and 13β than for the corresponding pyranoses 14α and 14β . Distinction between the signals of 13α and 13β is based on the ¹³C/¹H-correlated 2D spectrum and the comparison of the ¹³C chemical shifts with those reported for the α -furanose and β -furanose forms, respectively, of D-allose¹².

Integration of the various signals (Table I and II) established the proportions of 13α , 13β , 14α , and 14β . In contrast to 6-deoxy-5-C-methyl-D-xylo-hexose ¹⁶, which exists (at 40°) essentially as an 8:92 mixture of the α - and β -pyranose forms, and to D-allose ¹¹ for which a 3:5.5:15.5:76 mixture of the corresponding α -furanose, β -furanose, α -pyranose, and β -pyranose forms is observed in aqueous solution at 24°, 6-deoxy-5-C-methyl-D-ribo-hexose prefers the furanose form. This observation can be interpreted in terms of a greater release of strain (gauche effects) between the hydroxyl groups and the methyl groups in both of the furanose forms 13α and 13β than in the pyranose forms 14α and 14β . For 6-deoxy-5-C-methyl-D-xylo-hexose, gauche interactions of HO-3 and the Me₂C-5-OH moiety (absent from 13α and 13β) are probably responsible for the relative instability of the corresponding α - and β -furanose forms.

Since (1S,2S,4S)-2-exo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl (1R)-camphanate [the diastereometer of 1 derived from (1R)-camphanic acid]⁵ is as readily available as 1, the above approach is also applicable to the total, asymmetric synthesis of 6-deoxy-5-C-methyl-L-ribo-hexose.

EXPERIMENTAL

For general remarks, see ref. 17.

(15,45,5R,6R,7R)-6-exo,7-exo-(Isopropylidenedioxy)-4-exo-methyl-2,8-dioxa-bicyclo[3.2.1]octan-3-one [(-)-4]. — A solution of (-)-3^{6a} (5 g, 25 mmol) in anhydrous tetrahydrofuran (50 mL) at -40° was added with stirring to a solution of $(Me_3Si)_2$ NLi in the same solvent [prepared by addition of 15.6 mL of 1.6m BuLi in hexane (Fluka) to a solution of hexamethyldisilazane (6.2 mL) in anhydrous tetrahydrofuran (100 mL) at 0°] at -65° . The mixture was stirred at this temperature for 30 min, MeI (30 mL, 480 mmol) was added, and the temperature was allowed to rise to -20° during 20 min [the

TABLE I

'H-N.m.r. data (250 MHz, δ in p.p.m., J in Hz, external Me₄Si) of 6-deoxy-5-C-methyl-α,β-D-ribo-hexose in D₂O

Compound	Percentage	60									
	20°	.09	H-I	Н-2	Н-3	H-4	Me_{i}	$\mathbf{J}_{1,2}$	$\mathbf{J}_{2,3}$	J _{3,4}	J _{2,4}
Furanose											
13a	36.5	36.7	5.08	3.74	3.87	3.63	0.98,	4.1	6.1	4.0	
	±0.3	±0.2	$(5.34)^{b}$				96.0	(4.0)			
13 β	52.0	49.5	4.94	3.63	4.00	3.48	0.99,	2.2	4.9	6.3	
	±0.1	±0.1	(5.22)				0.98	(2.5)			
Pyranose								,			
14α	4.1	5.8	4.72	3.58	3.78	3.28	1.02	1.0	3.1	3.0	1.0
	±0.1	±0.4	(5.13)				0.95	(4.0)			
148	7.4	8.0	4.75	3.15	3.88	3.22	1.08,	7.8	3.4	3.4	
	±0.2	±0.3	(4.87)	(3.39)	(4.15)	(3.62)	0.95	(8.25)			

"Determined after storage of the solutions for 1 day (no further change); average of 10-12 independent integrations. Prigures in brackets for D-allose; see also refs. 10

TABLEII

¹³C-N.m.r. data [62.9 MHz, 20°, internal MeOH (49.6 p.p.m.), 125 mg/mL, δ in p.p.m., J in Hz] for 6-deoxy-5-C-methyl-α,β-D-ribo-hexose in D₂O

Compound	Percentage ^a	C-1	C-2	C-3	C-4	C-5	Me,
13α	35.7	96.8 (172) ^b	71.9 (149)	70.2 (152)	90.5 (144)	7.1.7	25.9 (125) 24.7 (125)
13β	53.2 ± 0.5	100.8 (173) 101.6	76.2 (153) 76.1	70.6 (150) 73.3	88.8 (147) 83.0	71.5	26.2 (125) 24.3 (125)
14α	3.4	90.7 (168)	72.0 (149)	66.6 (140)	74.5 (150)	77.04	26.0 (125) 22.2 (125)
14β	7.6 ± 0.5	90.8 (160) 94.3	71.9 (149) 72.2	72.0 71.2 (147) 72.0	00.9 73.9 (144) 67.7	0.70 7.77 74.4	29.1 (125) 20.8 (125)

^a Determined after storage of the solution for I week at 20°; the C-1 signals were integrated as in ref. 14. ^{b 1} J_{CH} values in brackets. Ttalics indicate data for D-allose 12.14

^d These assignments are not definitive.

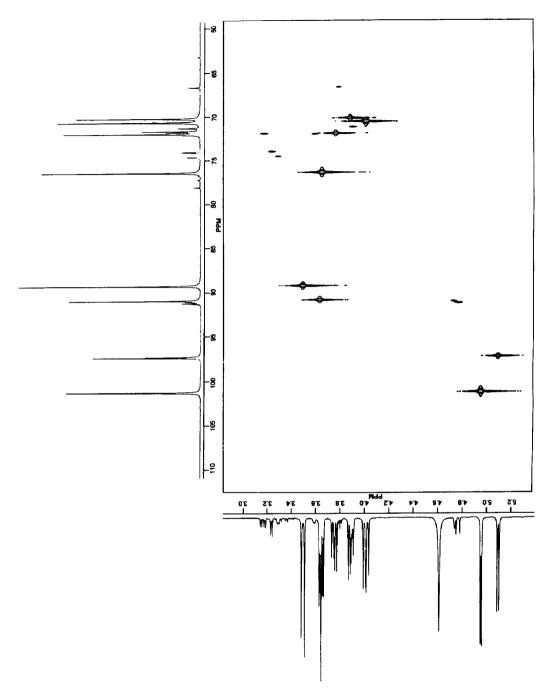


Fig. 1. 13 C/ 1 H-correlated 2D-spectrum of $13\alpha,\beta+14\alpha,\beta$ (400 MHz, D_2O , 125 mg/mL, 25°, program: XHCORRDC.AUR, Bruker). The 1D-spectra were measured under the usual conditions.

end of the reaction was determined by t.l.c.on silica gel with CH₂Cl₂-Et₂O (3:1) and detection with vanillin]. The mixture was poured into a vigorously stirred mixture of CH₂Cl₂ (100 mL) and saturated aqueous NH₄Cl at 0°. The organic layer was collected and the aqueous phase was extracted with CH₂Cl₂ (2 \times 50 mL). The organic extracts were combined and dried (MgSO₄), and the solvent was evaporated. The white solid was recrystallised from AcOEt-light petroleum (1:3) to yield (-)-4 (5.24 g, 98%), m.p.133.5-134°, $[\alpha]_{589}^{25}$ -35°, $[\alpha]_{578}^{25}$ -38°, $[\alpha]_{546}^{25}$ -43.5°, $[\alpha]_{436}^{25}$ -80.5°, $[\alpha]_{365}^{25}$ -140° (c 0.635, chloroform); λ_{max} (iso-octane) 218 nm (ϵ 73), λ_{max} (95% EtOH) 218 nm (ϵ 75); $v_{\text{max}}^{\text{KBr}}$ 2980, 2935, 1735, 1380, 1365, 1190, 985, 860, 835, and 720 cm⁻¹. N.m.r. data (CDCl₂): 1 H (250 MHz), δ 5.70 (d, 1 H, J_{1} , 1 Hz, H-1), 4.79, 4.63 (2 d, 2 H, J_{67} 5.8 Hz, H-6,7), 4.28 $(d, 1 H, J_{1.5} 1 Hz, H-5), 2.55 (q, 1 H, J_{4,Me} 7.8 Hz, H-4), 1.46 (d, 3 H, J_{Me,4} 7.8 Hz, Me-4),$ 1.45, 1.30 (2 s, each 3 H, CMe₂); 13 C (90.55 MHz), δ 168.5 (s, C-3), 113.4 (s), 103.2 (d, $^{1}J_{C.H}$ 184 Hz, C-1), 84.2 (d, $^{1}J_{C.H}$ 157 Hz), 83.6 (d, $^{1}J_{C.H}$ 161 Hz), 81.6 (d, $^{1}J_{C.H}$ 157 Hz) C-5,6,7), 40.7 (d, ${}^{1}J_{CH}$ 130 Hz, C-4), 25.9 24.9 (2 q, ${}^{1}J_{CH}$ 127 Hz), 17.9 (q, ${}^{1}J_{CH}$ 130 Hz, Me). Mass spectrum (70 eV): m/z 214 (3%, M⁺), 199 (53,), 185 (6), 141 (8), 112 (39), 100 (57), 85 (99), 83 (93), 71 (74), 59 (100), 55 (57).

Anal. Calc. for $C_{10}H_{14}O_5$ (214.22): C, 56.06; H, 6.59. Found: C, 56.13; H, 6.50. (1RS,4RS,5SR,6SR,7SR)-6-exo,7exo-(isopropylidenedioxy)-4-exo-methyl-2,8-dioxabicyclo[3.2.1]octan-3-one [(\pm)-4]. — Prepared from (\pm)-3^{6,18}, as described above, (\pm)-4 had m.p. 118–119°.

(1S,5R,6R,7R)-6-exo,7-exo-(Isopropylidenedioxy)-4,4-dimethyl-2,8-dioxabicyclo[3.2.1] octan-3-one [(-)-5]. — A solution of (-)-4 (30 g, 140 mmol) in anhydrous tetrahydrofuran (300 mL) at -40° was added to a stirred solution of (Me₂Si)₂NLi [prepared from 35 mL of (Me₃Si), NH in 600 mL of tetrahydrofuran and 100 mL of 1.6M BuLi in hexane] at -65° . The mixture was stirred at -60° for 30 min, MeI (180 mL, 2.8 mol) was added, and the temperature was allowed to rise to -20° during 30 min. The mixture was monitored and worked-up essentially as described for (-)-4, and the product was recrystallised from AcOEt-light petroleum (1:1) to yield (-)-6 (30.6 g, 96%), m.p. 119.5–120°, $[\alpha]_{589}^{25}$ – 14°, $[\alpha]_{578}^{25}$ – 15°, $[\alpha]_{546}^{25}$ – 17°, $[\alpha]_{436}^{25}$ – 35°, $[\alpha]_{365}^{25}$ – 67° (c0.645, chloroform); λ_{max} (iso-octane) 284 (ε 26), 230 nm (ε 246), λ_{max} (95% EtOH) 284 (ε 25), 229 nm (sh. ε 232); $v_{\text{max}}^{\text{KBr}}$ 2995, 2980, 2950, 1750, 1375, 1210, 1155, 1090, 995, 865, 835, and 740 cm⁻¹. N.m.r. data (CDCl₃): 1 H (250 MHz), δ 5.65 (d, 1 H, $J_{1,5}$ 0.5 Hz, H-1), 4.85, $4.76(2 d, 2 H, J_{67}5.5 Hz, H-6,7), 4.12(d, 1 H, J_{15}0.5 Hz, H-5), 1.47(s, 6 H, 2 Me); 1.32,$ 1.27 (2 s, each 3 H, CMe₂); 13 C (90.55 MHz), δ 172.1 (s, C-3), 113.3 (s), 103.5 (d, ${}^{1}J_{CH}$ 184 Hz, C-1), 87.8 (d, ${}^{1}J_{C.H}$ 159 Hz), 83.5 (d, ${}^{1}J_{C.H}$ 162 Hz), 78.1 (d, ${}^{1}J_{C.H}$ 158 Hz, C-5,6,7), 43.7 (s, C-4), 27.5, 26.0, 25.0, 20.4 (4 q, ${}^{1}J_{CH}$ 127–130 Hz, 4 Me). Mass spectrum (70 eV): m/z

228 (4%, M[†]), 213 (31), 126 (20), 111 (12), 100 (51), 97 (42), 85 (100), 69 (26), 55 (29), 45 (10).

Anal. Calc. for $C_{11}H_{16}O_5$ (228.10): C, 57.92; H, 7.07. Found: C, 52.72; H, 7.08. (1RS,5SR,6SR,7SR)-6-exo,7-exo-(Isopropylidenedioxy)-4,4-dimethyl-2,8-dioxabicyclo[3.2.1]octan-3-one [(\pm)-5], — Prepared by the above procedure from (\pm)-4, (\pm)-5 had m.p. 141–141.5°.

(1RS,4RS,5RS,6RS)-5-exo,6-exo-(Isopropylidenedioxy)-3,3-dimethyl-7-oxabicyclo [2.2.1] heptan-2-one (6). - A 20% suspension of KH (1.5 g) in oil was washed with anhydrous pentane (freshly distilled from Na) (25 mL, 5 times). The resulting white powder was dried under Ar, anhydrous tetrahydrofuran (25 mL) was added, the mixture was cooled to 0°, MeI (3.4 mL, 54 mmol) was added, and the temperature was allowed to rise to 18°. A solution of (\pm) -2¹⁸ (1 g, 5.4 mmol) in anhydrous tetrahydrofuran (25 mL) was added dropwise with vigorous stirring during \sim 15 min. MeOH (10 mL) was added, the mixture was poured into ice-water (100 mL) and extracted with CH₂Cl₂ (2 × 100 mL), the combined extracts were dried (MgSO₄), and the solvent was evaporated. The yellowish solid was recrystallised from Et, O-light petroleum (1:2) and then purified by flash-column chromatography on silica gel (40 g) with AcOEt-light petroleum (1:3) to give 6 (850 mg, 74%), m.p. $104.5-105^{\circ}$; λ_{max} (iso-octane) 315 nm (ϵ 31), λ_{max} (95% EtOH) 313 nm (ε 30); $\nu_{\text{max}}^{\text{KBr}}$ 2980, 2940, 2880, 1760, 1375, 1210, 1080, 1065, 1005, 860, 835, 780, and 730 cm⁻¹. N.m.r. data (CDCl₃): 1 H (250 MHz), δ 4.68, 4.38 (2 d, 2 H, J_{56} 5.5 Hz, H-5,6), 4.25 (s, 2 H, H-1,4), 1.44, 1.25, 1.18, 0.92 (4 s, each 3 H, 4Me); ¹³C (90.55 MHz), $\delta 214.6 \text{ (s, C-2)}$, 113.4 (s), $87.8 \text{ (d, }^{1}J_{CH}162 \text{ Hz)}$, $85.0 \text{ (d, }^{1}J_{CH}169 \text{ Hz)}$, 79.0 $(d, {}^{1}J_{CH} 157 Hz), 78.8 (d, {}^{1}J_{CH} 159) (C-1,4,5,6), 45.3 (s, C-3), 25.8, 25.1 (2 g, {}^{1}J_{CH} 127 Hz),$ 23.2, 18.5 (2 q, ${}^{1}J_{CH}$ 130 Hz). Mass spectrum (70 eV): m/z 212 (11%, M $^{\pm}$), 197 (52), 183 (13), 155 (3), 127 (12), 109 (50), 97 (86), 85 (100), 69 (61), 59 (48), 55 (66).

Anal. Calc. for $C_{11}H_{16}O_4$ (212.10): C, 62.25; H, 7.60. Found: C, 61.99; H, 7.59. (1RS,5SR,6SR,7RS)-6-exo,7-exo-(Isopropylidenedioxy)-4,4-dimethyl-3,8-dioxabicyclo[3.2.1]octan-2-one (7). — A mixture of 6 (594 mg, 2.8 mmol), NaHCO₃ (950 mg, 11.2 mmol), 3-chloroperoxybenzoic acid (55%, 1.8 g, 5.6 mmol), and CHCl₃ (60 mL) was stirred at 20° for 15 h. The reaction was monitored by t.l.c. as described above. After the addition of CH_2Cl_2 (40 mL), the solution was washed with H_2O (100 mL), then with saturated aqueous NaHCO₃ (50 mL). The aqueous phases were extracted with CH_2Cl_2 (50 mL). The organic extracts were combined and dried (MgSO₄), and the solvent was evaporated. The residue was recrystallised from AcOEt-light petroleum (1:4) to yield (\pm)-5 (472 mg, 74%). Column chromatography on silica gel LOBAR C (Lichroprep Si60, 40–63 μ m, 1:3 AcOEt-light petroleum) of the material in the mother

5,7-Dideoxy-2,3-O-isopropylidene-5,5-dimethyl- α , β -D-ribo-heptofuranos-6-ulose [(\pm)-8]. — A M solution of Me₃SiCH₂Li in pentane (55 mL, 55 mmol) was added slowly to a stirred solution of (-)-5 (5 g, 21.9 mmol) in anhydrous tetrahydrofuran (250 mL) at -65° under Ar. The mixture was stirred at -65° for 5 min and the reaction was monitored by t.l.c. [CH₂Cl₂-Et₂O (3:1), detection with vanillin and 2,4-dinitrophenyl-

liquor gave 7 (6 mg, 1%). H-N.m.r. data (360 MHz, CDCl₃): δ 5.01 and 4.80 (2 d, J_{67} 6.0

Hz, H-6,7), 4.59 (s, H-1), 4.10 (s, H-5), 1.58, 1.52, 1.44, and 1.36 (4 s, 4 Me).

hydrazine], MeOH (30 mL) was added dropwise, the temperature was adjusted to -40° for 20 min, and the reaction was monitored by t.l.c. (Et,O-light petroleum, 2:1). The mixture was poured into saturated aqueous NH₄Cl at 0° (400 mL) and extracted with CH₂Cl₂ (3 \times 250 mL), the extracts were combined and dried (MgSO₄), and the solvent was evaporated. The residue was distilled (Büchi, bulb-to-bulb) at 80-100°/0.15 Torr to yield (\pm)-8 (5.26 g, 98%), as a colourless oily 1:1 α,β -mixture, $[\alpha]_{589}^{25} + 0.2^{\circ}, [\alpha]_{578}^{25} + 0.6^{\circ},$ $[\alpha]_{546}^{25} + 0.8^{\circ}, [\alpha]_{436}^{25} + 4.0^{\circ}, [\alpha]_{365}^{25} + 21^{\circ}, (c \ 0.645, \text{chloroform}); \lambda_{\text{max}} \text{ (iso-octane) 286 nm } (\varepsilon)$ 27), λ_{max} (95% EtOH) 286 nm (ε 32); $v_{\text{max}}^{\text{Film}}$ 3500, 3420, 2990, 2940, 1710, 1370, 1215, 1150, 1075, 870, 850, amd 805, cm⁻¹. α Anomer: n.m.r. data (C_6D_6): ¹H (250 MHz), δ 5.22 (dd, 1 H, $J_{1,2}$ 4.4, $J_{1,0H}$ 8.2 Hz, H-1), 4.44 (dd, 1 H, $J_{2,3}$ 7.2, $J_{3,4}$ 3.8 Hz, H-3), 4.18 (dd, 1 H, $J_{2,3}$ $7.2, J_{1,2}4.4 \text{ Hz}, H-2$, $4.08 \text{ (d, 1 H, } J_{3,4}3.8 \text{ Hz}, H-4$), $3.99 \text{ (d, 1 H, } J_{1,OH}8.2 \text{ Hz}, OH$), 1.78 (s,3 H, MeCO), 1.26, 1.01, 0.93, 0.87 (4 s, each 3 H, 4 Me); 13 C (90.55 MHz, CDCl₃), δ 212.3 (s, C-6), 114.7 (s), 96.7 (d, ${}^{1}J_{CH}$ 178 Hz, C-1), 87.4 (d, ${}^{1}J_{CH}$ 148 Hz), 81.0 (d, ${}^{1}J_{CH}$ 158 Hz), 80.1 (d, ${}^{1}J_{CH}$ 160 Hz) (C-2,3,4), 49.9 (s, C-5), 26.4, 26.3, 24.7, 22.1, 20.7 (5 q, ${}^{1}J_{CH}$ 125–130 Hz, 5 Me). β Anomer: n.m.r. data (C_6D_6): ¹H (250 MHz), δ 5.49 (dd, 1 H, $J_{1,2}$ 0.9, $J_{1.0H}$ 6.5 Hz, H-1), 4.55 (dd, 1 H, J_{23} 6.3, J_{34} 3.1 Hz, H-3), 4.49 (dd, 1 H, J_{23} 6.3, $J_{1,2}$ 0.9 Hz, H-2), $4.12 \text{ (d, 1 H, } J_{34} 3.1 \text{ Hz}$, H-4), $3.78 \text{ (d, 1 H, } J_{1.0H} 6.5 \text{ Hz}$, OH), 1.76 (s, 3 H, 1)MeCO), 1.39, 1.09, 0.95, 0.94 (4 s, each 3 H, 4 Me); 13 C (90.55 MHz, CDCl₃): δ 214.1 (s, C-6), 112.9 (s), 103.6 (d, ${}^{1}J_{CH}$ 171 Hz, C-1), 92.7 (d, ${}^{1}J_{CH}$ 149 Hz), 87.0 (d, ${}^{1}J_{CH}$ 157 Hz), 80.6 (d, ${}^{1}J_{CH}$ 158 Hz) (C-2,3,4), 50.5 (s, C-5), 26.9, 26.3, 25.1, 22.5, 20.7 (5 q, ${}^{1}J_{CH}$ 126–130 Hz, 5 Me). Mass spectrum (c.i., NH₃): m/z 262 (74%), 244 (14, M⁺), 227 (100), 98 (14), 86 (19).

Anal. Calc. for C₁₂H₂₀O₅ (244.29): C, 59.00; H, 8.25. Found: C, 59.29; H, 8.36.

5,7-Dideoxy-2,3-O-isopropylidene-5,5-dimethyl- α , β -DL-ribo-heptofuranos-6-ulo-se [(\pm)-8]. — Obtained by the above procedure from (\pm)-5, (\pm)-8 had m.p. 64-65° (from AcOEt-light petroleum, 1:5).

5,7-Dideoxy-2,3-O-isopropylidene-5,5-dimethyl- β -D-ribo-heptofuranosyl-6-ulose acetate [(-)-9]. — (a) A mixture of (+)-8 (9.6 g, 39.3 mmol), Ac₂O (37 mL, 391 mmol), pyridine (31 mL, 384 mmol), and tetrahydrofuran (60 mL) was stirred at 20° for 1 h, then concentrated. Toluene (2 × 25 mL) was evaporated from the residue, which was then distilled at 120°/0.1 Torr to yield (-)-9 (10.9 g, 97%), m.p. 83.5–84°, [α]₅₈₉ - 34°, [α]₅₇₈ - 36°, [α]₅₄₆ - 41°, [α]₄₃₆ - 64°, [α]₃₆₅ - 82° (c 1.015, chloroform); λ _{max} (iso-octane) 283 (ϵ 30), 222 nm (sh, ϵ 75), λ _{max} (95% EtOH) 283 nm (ϵ 34); ν _{max} 2985, 2940, 1745, 1700, 1370, 1235, 1215, 1105, 1080, 975, 965, 865, 850, and 800 cm⁻¹. N.m.r. data (C₆D₆): ¹H (250 MHz), δ 6.46 (s, 1 H, H-1), 4.63 (dd, 1 H, J_{2,3} 6.0 Hz, J_{3,4} 3.0 Hz, H-3), 4.44 (d, 1 H, J_{2,3} 6.0 Hz, H-2), 4.36 (d, 1 H, J_{3,4} 3.0 Hz, H-4), 1.86 (s, 3 H, MeCO), 1.59 (s, 3 H, CH₃CO₂), 1.40, 1.13, 0.98, 0.96 (4 s, each 3 H, 4 Me); ¹³C (90.55 MHz, CDCl₃), δ 211.5 (s, C-6), 169.3 (s), 113.4 (s), 101.8 (d, ¹J_{C,H} 179 Hz, C-1), 93.6 (d, ¹J_{C,H} 152 Hz), 85.4 (d, ¹J_{C,H} 159 Hz), 80.0 (d, ¹J_{C,H} 158 Hz) (C-2,3,4), 50.0 (s, C-5), 26.9, 26.7, 25.2, 21.6, 21.0, 20.4 (6 q, ¹J_{C,H} 126–130 Hz, 6 Me). Mass spectrum (c.i., NH₃): m/z 304 (100%), 260 (3), 244 (15), 227 (32), 77 (14).

Anal. Calc. for $C_{14}H_{22}O_6$ (286.33): C, 58.72; H, 7.74. Found: C, 58.65; H, 7.70. (b) A M solution of Me_3SiCH_2Li in pentane (330 mL) was added slowly to a stirred

solution of (–)-5 (30 g, 131.4 mmol) in anhydrous tetrahydrofuran (1.5 L) at -65° under Ar. The mixture was stirred at -65° for 15 min and the reaction was monitored by t.l.c. (CH₂Cl₂-Et₂O, 3:1). MeOH (180 mL) was added slowly and the temperature allowed to rise to -40° . The mixture was stirred at -40° for 20 min and the reaction was monitored by t.l.c. (Et₂O-light petroleum, 2:1). The mixture was poured into saturated aqueous NH₄Cl (1 L) at 0° , the aqueous layer was extracted with CH₂Cl₂ (2 × 300 mL), the organic extracts were combined, and the solvent was evaporated. The residue was dissolved in tetrahydrofuran (180 mL), Ac₂O (115 mL) and pyridine (95 mL) were added, and the mixture was stirred at 20° for 1 h, then concentrated. Toluene (3 × 75 mL) was evaporated from the residue, which was then recrystallised from AcOEt-light petroleum (1:2) to yield (–)-9 (28g, 87%).

5,7-Dideoxy-2,3-O-isopropylidene-5,5-dimethyl- β -DL-ribo-heptofuranosylulose acetate [(\pm)-9]. — Prepared by the above procedure from (\pm)-8 or (\pm)-5, \pm 9 had m.p. 76–76.5°.

1,5-Di-O-acetyl-6-deoxy-2,3-O-isopropylidene-5-C-methyl-β-D-ribo-hexofuranose [(-)-10]. — Freshly prepared (CF₂CO)₂O (4 mL, 28.8 mmol) was added to a stirred mixture of 90% H_2O_2 (0.55 mL, 22.5 mmol) and CH_2Cl_2 (5.45 mL) at 0° , and stirring was continued at 0° for 1 h. 2.25m CF₃CO₃H in CH₂Cl₃ (0.89 mL, 2.0 mmol) was mixed with CH₂Cl₂ (3 mL) and added dropwise to a stirred solution of (-)-9 (200 mg, 0.7 mmol) in $CH_2Cl_2(3 \text{ mL})$ during 30 min (20° under Ar). After the end (~3 h) of the oxidation (t.l.c.; Et₂O-light petroleum, 2:1; vanillin), CH₂Cl₂ (10 mL) was added and the solution was washed with M NaHCO₁ (10 mL), then with half-saturated aqueous NaHCO₁ (10 mL). The combined aqueous layers were extracted with CH₂Cl₂ (15 mL). The organic phases were combined, then dried (MgSO₄), and the solvent was evaporated to yield (-)-10 (200 mg, 95%), m,p. 109–110° (from AcOEt–light petroleum, 1:3), $[\alpha]_{539}^{25}$ –93°, $[\alpha]_{538}^{25}$ -97° , $[\alpha]_{546}^{25} - 110^{\circ}$, $[\alpha]_{436}^{25} - 185^{\circ}$, $[\alpha]_{365}^{25} - 285^{\circ}$ (c 0.650, chloroform): λ_{max} (iso-octane) 214 nm (ε 170); λ_{max} (95% EtOH) 210 nm (ε 125); $\nu_{\text{max}}^{\text{KBr}}$ 2990, 2950, 1735, 1385, 1370, 1245, 1165, 1150, 1105, 1065, 1005, 975, and 865 cm⁻¹. N.m.r. data (C_6D_6): ¹H (250 MHz), δ 6.52 (d, 1 H, $J_{1,2}$ 8.0 Hz, H-1), 4.61 (dd, 1 H, $J_{2,3}$ 6.0, $J_{3,4}$ 1.9 Hz, H-3), 4.47 (dd, 1 H, $J_{1,2}$ 0.8, $J_{2,3}$ 6.0 Hz, H-2), 4.07 (d, 1 H, $J_{3,4}$ 1.9 Hz, H-4), 1.57 (s, 3 H, Ac), 1.47 (s, 6 H, Ac+Me), 1.36, 1.34, 1.13 (3 s, each 3 H, 3 Me); 13 C (62.9 MHz), δ 169.0, 168.5 (2 s, 2 CO), 113.1 (s), 102.8 (d, ${}^{1}J_{CH}$ 180 Hz, C-1), 94.6 (d, ${}^{1}J_{CH}$ 154 Hz), 86.3 (d, ${}^{1}J_{CH}$ 160 Hz), 80.9 (d, ${}^{1}J_{CH}$ 158 Hz) (C-2,3,4), 81.3 (s, C-5), 27.0, 25.4, 22.4, 21.9, 21.8, 20.5 (6 q, ${}^{1}J_{CH}$ 126–129 Hz, 6 Me). Mass spectrum (c.i., NH₃): m/z 320 (82%, M + 18), 287 (15), 260 (10), 243 (100), 201 (30), 185 (24), 143 (42), 131 (40), 100 (54), 85 (47).

Anal. Calc. for $C_{14}H_{22}O_7$ (302.33): C, 55.62; H, 7.33. Found: C, 55.79; H, 7.28. 1,5-Di-O-acetyl-6-deoxy-2,3-O-isopropylidene-5-C-methyl- β -DL-ribo-hexofuranose [(\pm)-10]. — Prepared by the above procedure from (\pm)-9, (\pm)-10 had m.p. 86-86.5°.

6-Deoxy-2,3-O-isopropylidene-5-C-methyl-β-D-ribo-hexofuranose [(-)-11]. — A mixture of (-)-10 (100 mg, 0.33 mmol), K_2CO_3 (23 mg, 0.16 mmol), and MeOH (4 mL) was stirred at 20° for 5 h, then filtered through silica gel (5 g), and the solvent was evaporated to yield (-)-11 (72 mg, 98%), as a colourless oil, $[\alpha]_{589}^{25}$ –9.1°, $[\alpha]_{578}^{25}$ –9.5°,

[α]₂₅₆ - 11°, [α]₄₃₆ - 17°, [α]₂₆₅ - 23°, (c 1.455, chloroform); λ_{max} (iso-octane) 291 (ε 22), 283 (ε 25), 230 (ε 175), 206 nm (ε 525); λ_{max} (95% EtOH) 228 (sh, ε 130), 204 nm (ε 440); ν_{max}^{film} 3250 (br), 2990, 1380, 1250, 1205, 1170, 1075, 1060, 1030, 950, 870, 840, and 800 cm⁻¹. N.m.r. data (C_6D_6): ¹H (250 MHz), δ 5.49 (d, 1 H, $J_{1,OH}$ 6.4 Hz, H-1), 4.86 (dd, 1 H, $J_{2,3}$ 5.9, $J_{3,4}$ 0.5 Hz, H-3), 4.82 (d, 1 H, $J_{1,OH}$ 6.4 Hz, OH), 4.53 (d, 1 H, $J_{2,3}$ 5.9 Hz, H-2), 4.05 (d, 1 H, $J_{3,4}$ 0.5 Hz, H-4), 3.60 (s, 1 H, OH), 1.41, 1.17, 1.10, 1.03 (4 s, each 3 H, 4 Me); ¹³C (62.9, C_6D_6), 112.1 (s), 103.4 (d, ¹ $J_{C,H}$ 173 Hz, C-1), 94.9 (d, ¹ $J_{C,H}$ 148 Hz), 87.5 (d, ¹ $J_{C,H}$ 157 Hz), 81.3 (d, ¹ $J_{C,H}$ 157 Hz) (C-2,3,4), 70.7 (s, C-5), 27.1, 26.7, 25.6, 24.9 (4 q, ¹ $J_{C,H}$ 126 Hz, 4 Me). Mass spectrum (c.i., NH₃): m/z 236 (66%, M + 18), 218 (100, M[±]), 201 (55), 117 (15), 101 (17), 85 (20).

Anal. Calc. for $C_{10}H_{18}O_5$ (218.25): C, 55.03; H, 8.31. Found: C, 55.16; H, 8.34. 6-Deoxy-2,3-O-isopropylidene-5-C-methyl- β -DL-ribo-hexofuranose [(\pm)-11]. — Prepared by the above procedure from (\pm)-10, (\pm)-11 had m.p. 74–75° (from AcOEtlight petroleum, 1:5).

Methyl 6-deoxy-2,3-O-isopropylidene-5-C-methyl- β -D-ribo-hexofuranoside [(-)-12]. — A mixture of (-)-11 (0.5 g, 2.3 mmol), 2,2-dimethoxypropane (4.2 mL), p-toluenesulfonic acid monohydrate (0.87 g, 4.6 mmol), and MeOH (10 mL) was stirred at 20° for 48 h, then neutralised with AcONa (470 mg, 5.8 mmol), filtered through Celite, and concentrated. Column chromatography (CH₂Cl₂-Et₂O, 3:1) of the residue on silica gel (10 g) gave a yellowish oil (480 mg, 90%) that was distilled at 90°/0.1 Torr to give (-)-12, m.p. 35.5-36.5°, $[\alpha]_{589}^{25}$ - 64°, $[\alpha]_{578}^{25}$ - 66°, $[\alpha]_{546}^{25}$ - 75°, $[\alpha]_{436}^{25}$ - 123°, $[\alpha]_{365}^{25}$ - 182.5° $(c 3.750, \text{chloroform}); \text{lit.}^3 \text{ m.p. } 35-36^\circ, [\alpha]_{589}^{25} - 63^\circ; \lambda_{\text{max}} \text{ (iso-octane) } 236 (\varepsilon 83), 218 \text{ nm } (\varepsilon$ 75); λ_{max} (95% EtOH) 243 (\$\varepsilon\$ 85), 216 nm (\$\varepsilon\$ 61); $\nu_{\text{max}}^{\text{KBr}}$ 3470 (br), 2980, 2940, 2840, 1375, 1210, 1090, 1030, 950, 865, and 835 cm $^{-1}$. N.m.r. data (CDCl₃): 1 H (250 MHz), δ 4.95 (s, H-1), 4.87, 4.55 (2 d, 2 H, J_2 , 6.0 Hz, H-2,3), 4.09 (s, 1 H, H-4), 3.46 (s, 3 H, MeO), 3.44 (s, 1 H, OH), 1.46, 1.30 (2 s, each 3 H, 2 Me), 1.23 (s, 6 H, 2 Me); 13 C (62.9 MHz), δ 111.9 (s), 110.5 (d, ${}^{1}J_{CH}$ 174 Hz, C-1), 95.1 (d, ${}^{1}J_{CH}$ 149 Hz), 85.7 (d, ${}^{1}J_{CH}$ 159 Hz), 80.8 (d, ${}^{1}J_{CH}$ 156 Hz) (C-2,3,4), 70.1 (s, C-5), 55.9 (q, ${}^{1}J_{CH}$ 143 Hz, MeO), 27.0, 26.4, 25.1, 24.7 (4 q, $^{1}J_{\text{C.H}}$ 126 Hz, 4 Me). Mass spectrum (c.i., NH₃): m/z 250 (100%, M + 18), 233 (10, M + 1), 218 (20), 201 (4), 115 (3), 101 (2).

Anal. Calc. for $C_{11}H_{20}O_5$ (232.28): C, 56.88; H, 8.68. Found: C, 56.95; H, 8.59. Methyl 6-deoxy-2,3-O-isopropylidene-5-C-methyl- β -DL-ribo-hexofuranoside [(\pm)-12]. — Prepared by the above procedure from (\pm)-11, (\pm)- 12 had m.p. 37.5–38.5°.

6-Deoxy-5-C-methyl-α,β-D-ribo-hexose (13α,β + 14α,β). — A solution of (-)-11 (1g, 4.6 mmol) in 0.5 M H_2SO_4 (20 mL) was heated to 80° for 150 min, then cooled to 20°, neutralised with BaCO₃ to pH 7–8, and filtered (Celite), and the solvent was evaporated. A solution of the residue in acetone was dried (MgSO₄) and then concentrated to yield the title mixture (770 mg, 94%), as a colourless oil, $[\alpha]_{589}^{25} + 25^{\circ}$, $[\alpha]_{578}^{25} + 25^{\circ}$, $[\alpha]_{546}^{25} + 27.5^{\circ}$, $[\alpha]_{436}^{25} + 39^{\circ}$, $[\alpha]_{365}^{25} + 53^{\circ}$ (c 2.59, water). The ¹H- (250 MHz, D₂O) and ¹³C-n.m.r. data (62.9) MHz, D₂O) are recorded in Tables I and II, respectively.

ACKNOWLEDGMENTS

We thank the Swiss National Science Foundation (Bern), the Fonds Herbette (Lausanne), Hoffmann-La Roche & Cie, AG (Basel), and E.I. du Pont de Nemours (Wilmington, DE) for generous financial support.

REFERENCES

- 1 Y. Chen, D.-P. Neff, and P. Vogel, Helv. Chim. Acta, 74 (1991) 508-516.
- J. Kiss and H. Spiegelberg, Helv. Chim. Acta, 47 (1964) 398-407; B. P. Vaterlaus, J. Kiss, and H. Spiegelberg, ibid., 47 (1964) 381-390; A. Klemer and M. Waldmann, Liebigs Ann. Chem., (1986) 221-225; O. Achmatowicz, G. Grynkiewicz, and B. Szechner, Tetrahedron, 32 (1976) 1051-1054; T. D. Brock, Antibiotics, 1 (1967) 651-665; J. Berger and A. D. Batcho, J. Chromatogr., 15 (1978) 101-158; J. W. Hinman, E. L. Caron, and H. Höksema, J. Am. Chem. Soc., 79 (1957) 3789-3800; L. Dolak, J. Antibiot., 26 (1973) 121-125; F. Reusser and L. Dolak, ibid., 39 (1986) 272-274; C. A. Claridge, R. P. Elander, and K. E. Price, Drugs Pharm. Sci., 22 (1984) 413-425; H. Kawaguchi, T. Naito, and H. Tsukiura, J. Antibiot., Ser. A, 18 (1965) 11-25; J. Berger, A. J. Schocker, A. D. Batcho, B. Pecherer, O. Kella, J. Maricq, A. E. Karr, B. P. Vaterlaus, A. Furlenmeier, and H. Spiegelberg, Antimicrob. Agents Chemother., (1965) 778-785; A. Arnone, G. Nasini, and B. Cavalleri, J. Chem. Soc., Perkin Trans. 1, (1987) 1353-1359; J. E. Hochlowski, S. J. Swanson, L. M. Ranfranz, D. N. Whittern, A. M. Buko, and J. B. McAlpine, J. Antibiot., 40 (1987) 575-588.
- 3 E. Walton, J. O. Rodin, C. H. Stammer, F. W. Holly, and K. Folkers, J. Am. Chem. Soc., 80 (1958) 5168-5173.
- 4 R. F. Nutt and E. Walton, J. Med. Chem., 11 (1968) 151-153.
- 5 A. Warm and P. Vogel, J. Org. Chem., 51 (1986) 5348-5353; P. Vogel, Y. Auberson, M. Bimwala, E. De Guchteneere, E. Vieira, and J. Wagner, ACS Symp. Ser., 386 (1989) 197-241, P. Vogel, D. Fattori, F. Gasparini, and C. Le Drian, Synlett, (1990) 173-185; P. Vogel, Bull. Soc. Chim. Belg., 99 (1990) 395-439.
- 6 J. Wagner, E. Vieira, and P. Vogel, Helv. Chim. Acta, 71 (1988) 624–630; Y. Auberson and P. Vogel, ibid., 72 (1989) 278–286.
- 7 D. Gagnaire and E. Payo-Subiza, Bull. Soc. Chim. Fr., (1963) 2627-2631; K. C. Ramey and D. C. Lini, J. Magn. Reson., 3 (1970) 94-102; W. L. Nelson and D. R. Allen, J. Heterocycl. Chem., 9 (1972) 561-568; F. Kienzle, Helv. Chim. Acta, 58 (1975) 1180-1183; C. Mahaim and P. Vogel, ibid., 65 (1982) 866-886; K. A. Black and P. Vogel, J. Org. Chem., 51 (1986) 5341-5348.
- 8 J. Wagner and P. Vogel, J. Chem. Soc., Chem. Commun., (1989) 1634-1635.
- 9 K. Röser, P.-A. Carrupt, P. Vogel, E. Honegger, and E. Heilbronner, Helv. Chim. Acta, 73 (1990) 1-12.
- M. Demuth, Helv. Chim. Acta, 61 (1978) 3136-3138; D. E. Seitz and A. Zapata, Tetrahedron Lett., 21 (1980) 3451-3454; J. W. Connolly and G. Uny, Inorg. Chem., 2 (1963) 615-616.
- 11 S. J. Angyal and V. A. Pickles, Aust. J. Chem., 25 (1972) 1695-1710; H. S. El Khadem and V. Nelson, Carbohydr. Res., 98 (1981) 195-201.
- K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66; D. E. Dorman and J. D. Roberts, J. Am. Chem. Soc., 92 (1970) 1355-1361; W. A. Szarek, D. M. Vyas, S. D. Gero, and G. Lukacs, Can. J. Chem., 52 (1974) 3394-3400.
- 13 U. P. Singh and R. K. Brown, Can. J. Chem., 49 (1971) 1179-1186.
- 14 D. Horton and Z. Walaszek, Carbohydr. Res., 105 (1982) 145-153.
- 15 L. M. J. Kroon-Batenburg, P. van den Sluis, and J. A. Kanter, Acta Crystallogr., Sect. C, 40 (1984) 1863-1865.
- 16 S. J. Angyal, V. A. Pickles, and R. Ahluwahlia, Carbohydr. Res., 1 (1966) 365-370.
- 17 F. Gasparini and P. Vogel, J. Org. Chem., 55 (1990) 2451-2457.
- 18 R. R. Schmidt, C. Beitzke, and A. K. Forrest, J. Chem. Soc., Chem. Commun., (1982) 909-910; E. Vieira and P. Vogel, Helv. Chim. Acta, 65 (1982) 1700-1706.